EVENING

2 8 DEC 2022

[Total No. of Questions: 09] Uni. Roll No.

[Total No. of Pages: 03]

Program: B.Tech. (Batch 2018 onward)

• Semester: 5th

Name of Subject: Control Systems

Subject Code: PCEE-110

Paper ID: 16462

Scientific calculator is Allowed

Detail of allowed codes/charts/tables etc. Graph paper & semi-log paper

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

- 2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice
- 3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

Q1.

- (a) Compare open loop and closed loop systems with suitable examples.
- (b) Define Gain margin and phase margin.
- (c) What is the difference between steady state and transient response?
- (d) What are state variables? List the advantages of state space analysis.
- (e) Using final value theorem, find the steady state error for unit step input.
- (f) Name the test signals used in time response analysis. Define ramp signal.

Part - B

[Marks: 04 each]

Q2. Find the transfer function of the given mechanical translational system.

Page 1 of 3

P.T.O.

EVENING

2 8 DEC 2022

Q3. Find the time domain specifications for the second order system given by

$$C(s)/R(s) = 8/(s^2 + 4s + 8)$$

- Q4. Explain in detail about PID Controllers used in control system.
- Q5. For the system represented by the block diagram shown in below figure, find Y(s)/R(s)

'Q6. 'Explain the Routh Hurwitz Criteria for stability. Determine the stability of given system using this criterion

$$s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$$

Q7. State and explain Nyquist criterion.

[Marks: 12 each]

Q8. Draw the root-locus of the feedback system whose open-loop transfer function is given by $G(s)H(s) = K/s^2(s+1)$

OR

Draw the Bode magnitude and phase plot of the following open-loop transfer function and determine gain margin, phase margin and absolute stability?

$$G(s)H(s) = 1 / s (s+2) (s+4)$$

Page 2 of 3

EVENING

2 8 DEC 2022

Q9. Describe the concepts of observability and controllability of a control system in detail?

Check whether the system represented by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \text{ is observable or not.}$$

OR

The open-loop transfer function is given by

$$G_p(s) = K/s(1+0.1s) (1+0.2s)$$

Design a lead-lag compensator to meet $K_v = 100 \text{ sec}^{-1}$ and phase margin $\geq 30^{\circ}$.
